SPECIFICATION SHEET FOR TY-PRIZ-7/5F6

1.APPLICATION

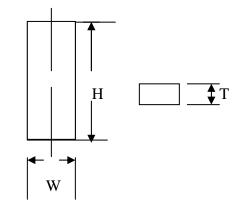
This specification applies to the Sealed Nickel-Metal hydride rechargeable cell or battery: Model: <u>TY-PRIZ-7/5F6</u>

2.RATINGS

Nominal Voltage	<u>1.2</u> V
 Rated (minimum) capacity *1 	<u>1100</u> mAh
 Standard charge rate 	<u>110</u> mA \times 16h
 Rapid charge rate 	<u>1100</u> mA
	(stop when voltage reduce to $5-10$ mV) *2
Value of dT/dt (for reference only)	<u>1 to 2</u> °C/min
Trickle current	22to 55 mA (Need timer)
 Discharge cut-off voltage 	$(n \times 1.0)V$ (n=16)
	$\{(n-1) \times 1.2\}$ V (n=710) (n: cell number)
• Operating temperature range	(Humidity: $+65\% \pm 20\%$)
Standard charge	0 to $+45^{\circ}$ C (32 to 113° F)
Rapid charge	0 to $+40^{\circ}C(32 \text{ to } 104^{\circ}F)$
Discharge	$-10 \text{ to } +65 ^{\circ}\text{C}(14 \text{ to } 149 ^{\circ}\text{F})$
 Storage temperature range 	(Humidity: $+65\% \pm 20\%$)
Within 1 year *3	$-20 \text{ to } +35^{\circ}\text{C}(-4 \text{ to } 95^{\circ}\text{F})$
Within 6 months	$-20 \text{ to } +45^{\circ}\text{C}(-4 \text{ to } 113^{\circ}\text{F})$
Within 1 month	-20 to +55 °C (-4 to 131 °F)
Within 1 week	-20 to +65°C(-4 to 149°F)

*1. Rated capacity figures are based on single cell performance.

*2. All rapid charge systems should be discussed with our engineer.


*3. We recommend cells or batteries are charged at least once every 6 months.

When operation falls outside these parameters please contact our engineer.

3. ASSEMBLY & DIMENSIONS

As per followed drawing:

Width	17.0 – 0.7mm
Height	67.5 – 1.0mm
Thickness	6.1 – 0.7mm

4.PERFORMANCE

4-1. TEST CONDITIONS

All tests are carried out on new cell or batteries. (Within one month after delivery) Ambient conditions:

Temperature	$+20^{\circ}\text{C}\pm5^{\circ}\text{C}$
Humidity	$+65\% \pm 20\%$

4-2. TEST APPLIANCES

4-2-1. Voltage meter:

0.5 level or higher as required in IEC51/IEC485. Internal impedance exceeds $10 \text{K} \Omega/\text{V}$.

4-2-2.Current meter:

0.5 level or higher as required in IEC51/IEC485. Internal impedance should be less than $0.01 \Omega/V$ (including wires).

4-2-3. Micrometer caliper:

With precision of 0.02mm.

4-2-4. Internal impedance meter:

Alternating current of 1000HZ, connector measuring equipment with sin wave of 4.

4-2-5: Impedance loaded meter:

Value of impedance is with $\pm 5\%$ error allowed (including external wires).

4-3. TEST METHOD & PERFORMANCE

4-3-1. Outer appearance:

Cells and batteries shall be free from any stains; scratches or deformations, which may reduce the commercial value of the product when visually inspected.

4-3-2. Size:

The size shall comply with the specified value in the attached drawing when measured by micrometer caliper.

4-3-3.Insulate impedance:

Checked by MM Ω meter, value of insulation between electrode and outer sleeve shall exceed <u>25</u> M Ω .

4-3-4. Weight:

The cell weights approx <u>20</u> g measured by scale.

4-3-5. Charge Voltage:

Following a period of discharge at 1CmA down to a terminal voltage of 1.0V, standard charge, the cell or battery shall be checked at 5 minutes before finish charging, The voltage shall be less than 1.6 V.

4-3-6. Open circuit voltage: (O.C.V.)

Following a standard charge period, the open circuit voltage of the cell or battery shall be checked within 1 hour. The O.C.V. shall exceed <u>1.25</u> V per cell.

4-3-7. Closed circuit voltage: (C.C.V.)

Following a standard charge period, the closed circuit voltage of the cell or battery shall be checked with a <u>0.86</u> Ω per cell load within 1 hour. The C.C.V. shall exceed <u>1.2</u> V per cell within 1 sec.

4-3-8. Internal impedance:

Following a standard charge period, the internal impedance of the cell or battery shall be checked at 1000Hz within 1 hour. The internal impedance shall not be more than $\underline{40}$ m Ω per cell.

4-3-9. Capacity:

Following a standard charge period, the cell shall be stored for a period of 1 hour. The capacity shall be equal or more than rated capacity when discharged at <u>0.2C</u> mA down to a terminal voltage of 1.0V. The capacity returned might not initially attain the specified value following the first charge –discharge cycle. In this event, the test may be repeated a further two or three times to attain the specified value.

4-3-10. High rate discharge:

Following a standard charge period, the cell or battery shall be stored for 1 hour. The discharge duration shall exceed <u>54</u> min(s) when discharged at <u>1C</u> mA.

4-3-11. Self discharge:

Following a period of discharge at <u>0.2C</u> mA down to a terminal voltage of 1.0V, standard charge and then the cell or battery shall be stored on open circuit for 28 days. The subsequent capacity shall not be less than <u>60%</u> of rated capacity when discharged at <u>0.2C</u> mA.

4-3-12. Over-charge:

Following a period of discharge at $_0.2C$ mA down to a terminal voltage of 1.0V, standard charge and then charge for 48hrs at $_0.1C$ mA. The capacity of the cell or battery shall not be less than the rated capacity when discharged at $_0.2C$ mA. It shall not be externally deformed and no leakage of electrolyte in liquid form shall be observed.

4-3-13. Over-discharge:

Following a period of discharge at <u>1C</u> mA down to a terminal voltage of 1.0V, combine the cells with a <u>0.86</u> Ω per cell load. After stored for a period of 24 hours, standard charged and then discharge at <u>0.2C</u> mA, the cell or battery shall not be externally deformed and no leakage of electrolyte in liquid form shall be observed, and the subsequent capacity shall not be less than <u>80%</u> of rated capacity

4-3-14. Life time (Based on clause 4.4.1, IEC285 1993):

The charge-discharge cycles shall exceed <u>500</u> times.

4-3-15. Humidity:

No leakage of electrolyte in liquid form shall be observed during 14 days of storage (cell is in standard charged state) under the following storage conditions:

 $33^{\circ}C \pm 3^{\circ}C(91.4^{\circ}F \pm 5.4^{\circ}F)$

Relative humidity of 80% \pm 5%. (Salting is permitted).

4-3-16.Vibration:

Store the cell or battery more than 24 hours after standard charge, following vibration tests over an amplitude of 4 mm (0.1575 inches) at a frequency of 16.7 Hz(1000 cycles per minute) and repeated through any axes during 60mins, the subsequent fluctuation of open circuit voltage and internal impedance shall be less than <u>0.02</u> V and <u>5</u> m Ω respectively, and the cell or battery shall not be externally deformed and no leakage of electrolyte in liquid form shall be observed.

4-3-17. Free falling: (Drop)

Store the cell or battery more than 24 hours after standard charge, following a drop test from 450mm (17.717 inches) on to a hard-wood board in a vertical axis 2 times on each of 2 mutually perpendicular axes, the subsequent fluctuation of open circuit voltage and internal impedance shall be less than 0.02 V and 5 m Ω respectively, and the cell or

battery shall not be externally deformed and no leakage of electrolyte in liquid form shall be observed.

4-3-18.Short:

Store the cell or battery for 1 hour after standard charge, it shall not explode during or at the end of a 1 hour short-circuit test. However, leakage of electrolyte, external deformation or outer sleeve cracking is permitted. (cross section of the wire should be more than 0.75mm², length should be the shortest distance between 2 polarities)

4-3-19. Incorrect polarity charging:

The cell or battery shall not explode during or at the end of a 5-hour period of incorrect polarity charging at 1C mA. However, leakage of electrolyte, external deformation or outer sleeve cracking is permitted.

4-3-20. Incorrect polarity over-charging:

The cell or battery shall not explode during or at the end of a 5-hour period of incorrect polarity over-charging at <u>1C</u> mA. However, leakage of electrolyte, external deformation or outer sleeve cracking is permitted.

4-3-21. Low temperature discharge:

After standard charged, the cell or battery shall be stored for 24 hours at $0^{\circ}C \pm 2^{\circ}C$. The discharge duration shall exceed <u>3</u> hour(s) <u>30</u> min(s) when discharged at <u>0.2C</u> mA at ambient temperature of $0^{\circ}C \pm 2^{\circ}C$.

5. OTHERS

5-1. The cell or battery shall be charged state at shipping.

5-2. Cut-off voltage:

- \square We recommend a cut-off voltage of 1.0 to 1.1V per cell.
- □ If the cut-off voltage is above 1.1V per cell, the battery may be underutilized resulting in insufficient use of the available capacity.
- □ If the cell voltage drops below 1.0V per cell, the battery may become over discharged or reverse charged.

Ni-MH Battery; Example on rapid charge system

	i (i i i i i i i i i i i i i i i i i i	più chui 50 system
<u>1.</u>]	Basic charge system	
1)	Rapid charge current	:0.5C to 1.0C mA
2)	Charge current to voltage for rapid charge	:0.2C to 0.3C mA
3)	Start voltage of rapid charge	:above 0.8V per cell
4)	Upper limit voltage (to trickle charge)	:1.8V per cell
5)	Value of minus delta V(- Δ V)	:5 to 10 mV per cell
6)	Temperature increase rate (dT/dt)	:1 to $2^{\circ}C/min$
7)	Upper limit temperature (Tco)	:50℃
8)	Initial non-detection timer of minus delta V(- Δ V)	:5 to 10 min
9)	Trickle charge current	:1/20C to 1/30C mA
10)	Transfer timer to rapid charge	:60min
11)	Total rapid charge timer	:1.5h
12)	Total charge timer	:10 to 20 h
13)	Ambient temperature for rapid charge	:0 to 47 °C